TORQUE (MOMENT OF FORCE)

Torque represents the capability of a force to produce change in the rotational motion of the body.

 $\vec{\tau} = \vec{r} \times \vec{F}$

Torque about a point :

Torque of force F about a point

Where

- \vec{F} = force applied
- P = point of application of force

Q = Point about which we want to calculate the torque.

 \vec{r} = position vector of the point of application of force w.r.t. the point about which we want to determine the torque.

$$\vec{\tau}$$
 = r F sin θ = r_LF = rF_L

Where θ = angle between the direction of force and the position vector of P wrt. Q. r₁ = r sin θ = perpendicular distance of line of action of force from point Q ,it is also called force arm.

> $F_{\perp} = F \sin \theta = \text{component of } \vec{F}$ perpendicular to \vec{r} SI unit of torque is Nm

Torque is a vector quantity and its direction is determined using right hand thumb rule and its always perpendicular to the plane of rotation of the body.

Torque about an axis :

The torque of a force \vec{F} about an axis AB is defined as the component of torque of \vec{F} about any point O on the axis AB, along the axis AB.

In the given figure torque of \vec{F} about O is $\vec{\tau_0} = \vec{r} \times \vec{F}$

The torque of \vec{F} about AB, τ_{AB} is component of $\vec{\tau}_0$ along line AB.

T